Autoware Architecture Proposal

Architecture proposal for AWF by Tier IV Inc.
Agenda

1. Why we need a new architecture
2. Considered use cases
3. Architecture overview
 - Layered architecture
 - High level introduction of each module
4. Contribution steps to Autoware community
5. Conclusion
1 Why we need a new architecture
Why we need a new architecture

Problem

- It's difficult to improve Autoware.AI capabilities

Why?

- No concrete architecture design
- A lot of technical debt
 - Tight coupling between modules
 - Unclear responsibility of modules

Tier IV's proposal

- Define a layered architecture
- Clarify the role of each module
- Simplify the interface between modules
Considered use cases
Considered use cases

Example use cases that were considered during architecture design:

<table>
<thead>
<tr>
<th>Module</th>
<th>Use cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensing</td>
<td>● 360-degree sensing by the camera-LiDAR fusion</td>
</tr>
<tr>
<td>Perception</td>
<td>● Recognition of dynamic objects and traffic lights</td>
</tr>
<tr>
<td>Localization</td>
<td>● Robust Localization using multiple data sources</td>
</tr>
</tbody>
</table>
| Planning | ● Route planning, dynamic planning based on vector map (not only waypoint following)
 | ● Automatic parking |
 | ● Object avoidance |
| Control | ● High control performance on many kinds of vehicle-controllers |

Features that are not considered yet (for the sake of development speed)
- ● Real-time processing
- ● HMI / Fail safe / Redundant system / State monitoring system / etc…
Will consider these items at AWF WGs
Demo video

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole</td>
<td>Scenario demo</td>
</tr>
<tr>
<td>Sensing+Perception</td>
<td>360° FOV, Prediction</td>
</tr>
<tr>
<td>Localization</td>
<td>Robustness of localization, Return from error</td>
</tr>
<tr>
<td>Planning</td>
<td>Lane change, Obstacle avoid, Parking</td>
</tr>
<tr>
<td>Control</td>
<td>Slow brake (normal stop), Rapid brake (emergency stop)</td>
</tr>
</tbody>
</table>
3 Architecture overview
Layered architecture
High level introduction of each module
Autoware

Perception
- Dynamic object
 - Detection
 - Tracking
 - Prediction

Sensing
- Traffic light
 - Detection
 - Classifier

Map

Vehicle

Control

Sensing
- Sensor data
 - Map data

Map

Vehicle sensor

Vehicle interface

Steering/velocity feedback

Vehicle command

Mission

Scenario
- Scenario selector
 - Lane following
 - Parking
 - etc.

Surrounding environment

Current pose/velocity

Trajectory

DRAFT: https://github.com/tier4/Autoware_architecture_proposal
Role: Conversion of sensing data to ROS message

Examples of preprocessors
- Distortion correction
- Outlier filter
- Concat filter
- Ground filter

ROS drivers (mainly from upstream)
Role: Distribute static environment information to other modules

Map is distributed as a single message, and accessed through library API

Conversion to on-memory data structure
Coordinate transformation
Role: Integration of each sensor data and estimation of self-pose and self-twist

Support multiple localization methods based on different sensors (LiDAR/Camera/GNSS)

Fuse pose and twist (e.g. EKF)

Merge sensor inputs
Role: Dynamic object recognition and traffic light recognition

Dynamic object's information including:
- ID
- Semantic (label, confidence)
- Shape
- State (pose, velocity, acceleration, predicted path, etc)

Traffic light's information including:
- State (red, green, yellow, etc)
Could be customized for unique traffic light types.
Role: From a calculation of the route to the goal to drive trajectory generation

- Route planning from vector map
- Dynamic objects
- Traffic lights
- Obstacles
- tf(map to base_link)
- Map
- Mission planning
- Scenario planning
- Select
- Scenario selector
- On road
- Parking
- etc.
- Trajectory.msg
- Selects appropriate module depending on situation
- Modulated scenarios allow:
 - distributed development
 - Easier parameter tuning per situation
Role: Generation of control signals to drive a vehicle following trajectories

Final gateway for commands to vehicle:
- engage
- acceleration limits
- etc

Vehicle velocity
Steer angle
VehicleStatus.msg
Trajectory.msg

Trajectory follower

ControlCommandStamped.msg
VehicleCmd.msg (proposed architecture)

VehicleCmd.msg (autoware.ai)

Remove redundant output

Support low level control
Contribution steps to Autoware community
Contribution steps to Autoware community

Tier IV
- Architecture proposal
- Documentation writing
- Clean up sample impl

Today's presentation
Detailed doc
Sample impl

Design additional modules (mainly related to Safety)
Architecture validation in real-environment
Develop cutting edge features

Feedback design and sample impl

AWF (Including Tier IV)
- Architecture discussion and refinement at Discourse and GitLab
- Autonomous Valet Parking
- Architecture clean up
- Technical debt clean up
- Documentation clean up

Design and implement new architecture
Next ODD development

5 Conclusion
Conclusion

- We proposed a new architecture of Autoware
- Tier IV will contribute our achievements to Autoware community
 - Detailed design documents
 - Reference source code
- We would like to discuss the new architecture at WGs
 - Any feedback is welcome
- We will make an effort to implement the new architecture in Autoware.Auto
Backup
Backup agenda

- Design alternative
- Module implementation
 - Implementation details
 - Achievements
Backup agenda

- Design alternative
- Module implementation
 - Implementation details
 - Achievements
Pre-study of the planning architecture

<table>
<thead>
<tr>
<th>Type</th>
<th>Structure</th>
<th>Pros.</th>
<th>Cons.</th>
</tr>
</thead>
</table>
| BOSS type (Junior type) | Mission | Behavior | Motion | • Structure is intuitive and easy to understand.
• Easy to handle separately. | • Behavior has to make a conservative decision in order to reduce discrepancies with a motion’s decision. |
| CMU Dr. paper type | Mission | Trajectory | | • It solves and optimizes both behavior and motion simultaneously to overcome a cons. of the BOSS type. | • Difficult to improve if any issue was found.
• Optimization of the whole autonomous driving functions is not realistic.. |
| Victor Tango type | Mission | Behavior | Motion | • Behavior and motion are tightly coupled to overcome a cons. of the BOSS type.
• Easy to improve if any issue was found | • Difficult to take a new research result into the modules. |
| Apollo type | Mission | Scenario | | • Scenario is one layer upper concept.
• We can adopt preferred types of the planning structure according to each scenario. | • In the scenario, cons. such as things described above are still remained.
• If scenarios increased, switching mechanism can be complicated. |
Finally, we adopted **Apollo + Boss type**

- **Lane following scenario** : BOSS type
 - It’s clear and convenient to develop as OSS
- **Whole module** : Apollo type
 - New scenario can be added as needed

Future challenge
- In lane following scenario, behavior still makes a conservative decision. And an aggressive driving like changing lane by entering into crowded lane cannot be executed.
Backup agenda

- Design alternative
- Module implementation
 - Implementation details
 - Achievements
The origin of MGRS coordinate

The point projected vertically downwards from the center point of the rear wheel axle to the ground.

Vehicle specified setting
(Here is an example of Tier IV’s implementation)
[Sensing] Components

Localization

Perception

Planning

Sensing

IMU driver

GNSS driver

Camera driver

LiDAR driver

Points preprocessor

/sensing/gnss/[name]/pose_with_covariance

/mapping/points

/mapping/points/no_ground

/mapping/points/with_ground

/mapping/points/visolodyne

Outlier filter

Distortion correction

Self cropping

Multiplexer

Concat

Ground filter

Geometry maps

/geometry/maps/TurnSequence

/geometry/maps/TurnSequence/turns

/geometry/maps/TurnSequence/velodyne

/geometry/maps/TurnSequence/velodyne/velodyne_packets
● **Distortion correction**
 ○ Corrects a distortion of the pointclouds due to an observation time gap
 ▷ Accuracy of the localization is improved

● **Ground filter**
 ○ Removes a ground from pointclouds (.ai has same feature)

● **Outlier filter**
 ○ Removes outliers by ring-base method
 ▷ Reduce impacts of leaves and insects

● **Concat filter**
 ○ Integrates some pointclouds
 ○ Reduces an impact when a part of sensors stop
 ○ Corrects time gaps between each LiDAR with odometry
 ▷ Accuracy of the localization is improved
[Localization] Components

Localization

Pose Estimator
- Sensing
- Sensing
- Sensing
- Loader

Twist Estimator
- IMU-VehicleTwist fuser
- IMU-GNSS-VehicleTwist fuser

Pose Twist Fusion Filter
- DownSampler
- NDT Scan Matcher
- EKF

Localizer Diagnostics
- Safety Diagnostic Node
- Localization System Diagnostic Node

Diagnostic Nodes
- IMU-GNSS-VehicleTwist
- IMU-VehicleTwist
- Crop Measurement Range
- DownSampler
- NDT Scan Matcher
- EKF

Diagnostic Paths
- /localization/fusion_localizer/twist
- /localization/diagnostic
- /tf
- /sensing/gnss/[name]/pose_with_covariance
- /sensing/lidar/pointcloud
- /map/pointcloud
- /sensing/imu/[name]/imu_raw
- /vehicle/status/twist_with_covariance

Map Paths
- /map/pointcloud
- /tf
Localization Feature

- **Pose initializer**
 - Automatic initial self position estimation by GNSS + Monte-Carlo method

- **NDT scan matcher**
 - Uses an estimated value of EKF as an initial position of the scan matching. If scan matching was failed, localization can be returned.
 - Performance and accuracy are improved (Open-MP implementation, accuracy improvement of the initial position, improvement of the gradient method, distortion correction of pointclouds, and etc.)

- **Scan matching failure judgement**
 - Monitors statuses of scan matching based on a score.
 - If score is lower than a threshold, an estimated result isn’t output.

- **EKF localization**
 - Integrates the estimated self position of the scan matching and the velocity of CAN + IMU.
 - If scan matching broke down, the vehicle can drive a certain distance with odometry only.

- **IMU Vehicle-twist fusion**
 - Uses a translation velocity of CAN and yaw rate of IMU. Accuracy of odometry is improved.

- **Localizer Diagnostics**
 - Monitors a status of a whole localization module (Temporary implementation)

※ Only NDT is implemented in Pose Estimator now. In future, other estimators like a white line recognition based one will be added.
[Perception] Components
[Perception] Feature

Dynamic Object
- **Point Cloud Segmentation**: Splits pointclouds into object clusters
 - Becomes faster by algorithm improvement (It can work in real-time on CPU)
- **Image Detection**: Detects objects on an image as ROI
 - Becomes to work on 40FPS on Jetson AGX by Tensor RT and int8 quantization
- **Fusion**: Matches the result of Pointclouds Segmentation and the ROI of the image detection result
 - Matching accuracy is improved by using IoU
- **Shape Estimation**: Geometrically approximates the whole size of the objects by Point Cloud Segmentation
 - Shape estimations by each object class
 - Accuracy improvement by changing fitting algorithm of Bounding Box
- **Multi-Object Tracking**: Assigns IDs based on time series data, estimates the velocity and the acceleration, and removes outliers
 - Performance improvement by changing a tracking model by class labeling
 - Data association considering the class label and the size
- **Map Based Prediction**: Predicts moving path of the objects with the lane information in a map
 - Infers objects’ intent of the behavior and estimates each reliability of the predicted moving paths.

Traffic Light
- **Map Based Detection**: Extracts an ROI of the traffic light in camera image based on the self position and map data
 - Takes errors of a self position, a calibration and a hardware vibration into consideration
- **Fine Detection**
 - Extracts the ROI of the traffic light more precisely with a learner
- **Classifier**: Recognizes a state of the traffic light by a color information in the image
 - Reduces detection errors by fine noise removement process
[Planning] Components

On road
- Mission planner
- Behavior
 - Lane change planner
 - Behavior velocity planner
- Motion
 - Motion path planner
 - Obstacle stop planner
 - Jerk filter

Path
- Route.msg
 `/planning/mission_planning/route`
- Path.msg
 `/planning/scenario_planning/scenarios/lane_following/behavior_planning/path`
- Trajectory.msg
 `/planning/scenario_planning/scenarios/lane_following/motion_planning/trajectory`

Parking
- freespace
 - Costmap generator
 - Freespace planner
 - Scenario selector

- Trajectory.msg
 `/planning/scenario_planning/scenarios/parking/freespace_planner/costmap_generator/occupancy_grid`
- Trajectory.msg
 `/planning/scenario_planning/scenarios/parking/freespace_planner/trajectory`
- Trajectory.msg
 `/planning/scenario_planning/scenarios/parking/freespace_planner/trajectory`
[Planning] Feature

● Scenario selector
 ○ Chooses and executes “lane_following” or “parking” scenario according to the information of the mission

● Mission planner
 ○ Automatically searches the route from a self position to a goal via certain pass through points (by using lanelet function)
 ○ Automatically generates a route by using a map information

● Lane change
 ○ Judges a situation which needs lane change (Drive route limitation / street parking avoidance)
 ○ Judges whether a collision with a dynamic will happen obstacle and if a lane change is possible, it will be executed

● Behavior Velocity Planner
 ○ Plans a velocity based on traffic rules
 ○ Supports intersections, crosswalks, back-side check when turning right/left, stop with traffic lights and temporary stop line
 ○ Uses results of the perception (dynamic object information)

● Obstacle avoidance (motion path planner)
 ○ Plans a path to avoid the obstacle while driving (A* + QP)
 ○ Generate a smooth path considering a drivable area and the obstacle

● Obstacle stop (obstacle stop planner)
 ○ Judges whether a collision with obstacle point coulds considering the vehicle shape, and fill a stop velocity

● Jerk filter
 ○ Smoothens the velocity under the limitation of max speed, acceleration and lateral acceleration (QP)
 ○ Enables to switch rapid/slow acceleration and deceleration plans
[Control] Components

- **Longitudinal Controller**
 - Calculates a target velocity and a target acceleration by PID
 - Supports a gradient correction and start/stop at a slope
 - Supports a smoothly stop

- **Lateral Controller**
 - Calculates a steering angle and an angular velocity (pure pursuit or MPC)

- **LatLon Coupler**
 - Integrates the longitudinal and lateral control command values

- **Vehicle Cmd Gate**
 - Switches the some command values like “remote” and “auto”
 - Attaches a limitation for the control command
 - longitudinal/lateral acceleration, longitudinal/lateral jerk

![Control Diagram]

- In this implementation, longitudinal and lateral controls are separately culcurated
- In future implementation, these might be culcurated collectively
- **Accel Map Converter**
 - Converts a target acceleration to a vehicle specific accel/brake pedal value by Accel Map
 - If the vehicle_interface supports a velocity/acceleration command, this converter isn’t necessary

- **Vehicle Interface (vehicle specific)**
 - Interface between Autoware and a vehicle
 - Communicates control signals
 - Obtains the vehicle information
Other features

- **Web Controller**
 - Through this controller, we can engage and specify the max velocity and also use “Go Home” button, “lane change OK” button and sensor Hz monitor

- **Autoware State Monitor**
 - State monitoring (Initializing / WaitForEngage / Driving / …)
Backup agenda

- Design alternative
- Module implementation
 - Implementation details
 - Achievements
Achievements (1/2)

- Automatic initial self pose estimation
- Robustness of self pose estimation improvement
 - CAN / imu fusion, EKF feedback, Gradient method algorithm improvement, pointclouds distortion correction, estimation speed improvement by Open-MP implementation
- 3D objects class recognition and shape estimation
- Performance improvement of dynamic objects tracking
- Moving path prediction of dynamic objects by using map information
- 360-degree sensing by the camera-LiDAR fusion
- Automatic lane change planning & decision
- Object avoidance (with lane change/ in the same lane)
- Intersection support (consider the oncoming vehicles and crossing vehicles)
- Person recognition at pedestrian crossing
Achievements (2/2)

- Performance improvement of the traffic light recognition
- Blind spot check when turning right/left
- Route generation from current position to a destination (via specified passing points)
 - With this feature, “Go Home button” can be implemented
- Automatic parking
- Slope support
- Slow / rapid brake planning support
- Performance improvement of the vehicle control
- Automatic deceleration at curve
- Collision judgement considering a vehicle shape